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Approximate methods in the analysis of continuous media

Deformable structures can be examined:

- experimental methods (cost, time consuming)

- theoretical methods:

e analytical (only simple models)

* numerical (approximate methods) — FDM, BEM, FEM
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In approximate methods, the problem of searching for unknown functions
(e.g. describing the displacement field) is replaced by the problem of searching
for a finite number of parameters.




Principle of minimum total potential energy

The finite element method in structural statics is usually presented as an
approximate method using the theorem on the minimum total potential energy
of a deformable system.

Total potential energy of a deformable system:

_____________________________________________________

z ) —domain,I' — boundary, u;— displacement vector,
0;j — Stress tensor, p; — surface load,
x Y g;j — strain tensor, X; — mass forces

The principle of minimum total potential energy states that:
Of all geometrically admissible forms of displacements to which an elastic system may

be subjected, the one for which the functional of the total potential energy reaches a
minimum value will occur. Tt !
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V- functional (of the searched function u(x) assigns a number)

Minimizing the functional is the task of variation calculus




Example 1: Deflection line of a beam
w(x)
q(x)

7

. 2 /
dT dM

= — T = —
1 dx dx
< L >
Boundary conditions: |(w(x = 0) = 0| |(w(x=L)=0| |[dw (x=0)=0
dx
Differential equation Principle of minimum total potential energy

dx?

2 2 1 L L
‘ (E] fo) =qx) V(w) = EJ EJ (w")?dx —j q()w(x) dx = min
0 0

w(x) — approximate function w(x) - unknown function

Approximate function:
n

wx) = ) a; g;(x)
i=1
Approximation: parametric or nodal
global or local




The Ritz Method

Let's introduce an approximating function:

W(X): a - gl(x)+a2 ' gz(x)+---+ a, - gn(X)

(it can be a power or Fourier series)

The approximating function is a linear combination of the unknown parameters a,
and known geometrically feasible functions g;(x)

After substituting this function into the expression for the total potential energy,
we obtain the function of parameters a, :

V=%LLE](W")de—JOLq(x)V’T/(x)dx - V="f(a,a,,..,a)

Now we need to find the minimum of the function with respect to the parameters:

oV oV oV

-0 -0 -0 Finally, we get a system of
@ai ’ 8a2 @an linear algebraic equations

— q ) V~V(X)




Example 2: Cantilever beam loaded with uniform distributed load

EJ w(X) j Po  solve a cantilever beam using the given
/ ‘ approximating function using the Ritz method:

~

W(X) = al + a2 - X 4+ a3 . X2 + a4 . X3 Polynomial

of 3rd order

soundar conons #{x =0)=0/=b 3, =0 [W(x=0)=0| = a,=0

For the function to satisfy geometric condltlons

~

W(x)=a,-x*+a, - X’ —}évT/'(x):Za .X+3a, x2—>v~v"(x):2a +6a, - X

Potential energy: After substituting the apprOX|mat|ng functlon
|

ZLJ'EJ[W” x)[d x—jp() ()dx _}V jEJ W(x )] dx — _[po )dx

0

\Y; EJII (2a, +6a,x )’ dx— po_[(a3x2+a4x3)dx
0

2
0

(4a32 +24a,a,Xx+36a;x° )dx —~ po_l[(a3x2 + a4x3)dx

0

V EJ

2

O —_— —




Example 2: Cantilever beam (cont.)

I
\Y EJJ4a +24a,a,X +36a;X )dx—p0
0

2

j (a,x? +a,x° )dx

0

|
EJ 2 2 2,3 1 3,1 4

Y% =%(4a§l+12a3a4lz+12afl ) po( a,l® + 1a4l“)

The minimum condition for a function:

( oV oV 2 3 2
—— =0 =-p =E8la, +121°a, )-% p,|° = _ 5 Pl
83.3 aa3 2 ( 3 ) 3 Fo a3 24 E(j]y

{

GV . oV __EJ 2 3 4 :—ip—ol

e I VB TURL R o

~ |2 Pol 3
Final imating function: | W(X )= = 22 LBy
INal approximating tunction ( ) 24 EJy 12 EJy




Example 2: Cantilever beam (cont.)

2
Final approximating function: W(X)_i Pol” /2 1 Pl

— 24 EJ, 12E),
Bending moment approximation:
V. = Al — 5 1
MB E]yW (X) - MB(X) _ 12p0l _§p0l'x

Approximation of shear force:

T=E),#(x) = T(x)=-%p

The exact solution: 12 5
w(x) =2 P 2 Pl 341

24 EJ

y

1
Mp(x) = Epo(l — x)*

T(x)=—py(l - )




Example 2: Cantilever beam (cont.)

Approximate solution: The exact solution:
Sy — 5 Pol® 2 1 Pl (3 6 P2 o2 2 Pl U3 . 1 P 4
W(X) 24 €3, X 128, X W(X)=§ E"Jy - X —EE—jy-X —I—QE—JOy-X
_ 5 1 1 ,
Mp(x) = 5 Pol” = 5 Pol - x Mp (x) =§Po(l—x)
=~ =
T(X)—_E pol T(X)—_po(l_x)
12 polz\‘. M, (x)
2% 5 2 // =
wi(x) 1z Pol M, (X 1 p
6% g 12 Mo
11%3 W(X) \\ | :
_é > X \l X
I
W(1)=0.1252" w(l)=0.1252 K T(x) |
4 4 :X
W(21)=00822 | | w(zl)=00842" / B
W(31)=0.042 w(31)=0.044 —3 Pl |7 /\\T(x)
W(1)=0.0122 w(t1)=0.0132" ol




Example 3: Beam fixed on both ends

w(x)

EJ
A _ATe ¢

Solve a statically indeterminate beam using the Ritz
method and a given approximating function:

; 51 P ul :| _ W(x):A-(l—coszTﬂxj
2
W'(x )_ZI—ﬂAs 2 VTI"(X)=4I7§ A-coszTﬂX
Boundary conditions: W(X:O):O W'(X:O):O W(le)z W'(X=|)=O

The function satisfies the geometric conditions!

Total potential energy:

After substituting the approximating function:

= %f EJ[w'(x)['dx—P

w3 1)

->

=1 I EJ[W"(x)[ dx—

P-a(31)

Arr*
TN
0

2
J dx—P-A- (1—003

Zﬂélj

EJ1672% ., |

V =
2 I

0

A? -_[coszzTﬂde—ZP-A

10




Example 3: Beam fixed on both ends (cont.)

w(x)

> EJ
AC

W(x)= A-(l—coszTﬂxj

< A P Bl 7
4 | Total potential energy:
2 | ) I V = A’ —2P- A
The minimum condition for a function:
N _g —p N _ 87[EJA2PO_> A PP
OA OA Ar*EJ

An approximate function describing the deflection line:

3

Ar*EJ

W(x) =

-(1— COS ZTﬂXj

Bending moment approximation:

Pl 21X
Mg(x) = E] -W"(x) = — - cos—

2 l
Shear force approximation:

P 271X
T(x)=EJ-W"(x)=——- smT

T

11




Example 3: Beam fixed on both ends (cont.)

Exact solution:

T(x) 2P

LAY
— 1 p (AL

2 .
MB(x):_'COSLx T(X):__Slnl—

~ P 271X

[ T

2p
Wl [,
>

_2p

) —PI® PI3

w,,, =w(il)= o,y - 0005208 —

12




Approximate methods — flow chart

real phenomenon

— REAL RESULT

A 4

laws of physics, material properties, geometry,
boundary conditions

(continuous )

mathematical model

—> EXACT SOLUTION OF THE MATHEMATICAL MODEL

e
_§ discretization, approximation
w
E \ 4
*g Discrete model [———> EXACT SOLUTION OF THE DISCRETE MODEL
kS
S
L .
S numerical
< calculations
Y Discretization — selection of a finite number
NUMERICAL RESULT

of parameters,

Approximation — a method of description
using pre-defined simple functions depending
on the parameters being searched for

13




Choosing a mathematical model

N y Bravity (SEZ) density p(%)
e ;o
Wooden lh =
board : l t 7 ya
Z

uniform distributed load: pgah (%)

1D | ‘ |
beam T_;Cv W N WU W S N N T S N W - [é !
pressure: pgh (%)
2D 7AW EEEND EEEED CEEE SIS G G G S M SR S v/
A 1 1 PP ey
plate Z ; =
N
mass load: pg (ﬁ)
3|]')d / L T T T T T T T B O B # 4
SOll

Assumptions:
Material properties:
* jsotropic,

* anisotropic,

* viscoelastic,
Large deflections
Boundary conditions
(contact)

There is no single
best model!

The right model depends on:

the purpose of the analysis,
the design requirements,
the desired accuracy of the
results,

the availability of material
data,

the available
computational tools

14




Discretization and approximation on the example of a function of one variable

A function: f(x) intheinterval < a,b >

we devide the interval < a,b > into n equal subintervals of length: h = (b — a)/n

continuous function f(x) represents a set of

f(x) (n + 1) values: f(a+ih),i =0,1,2,n

f

The approximation can be:
- constant (stepped),

h'h h h - linear,

— . :
: - using splines.
X~a X; X, X; =a+ih b X gsp

15




Discrete solution versus exact solution of the continuous problem

Discrete model

EXACT SOLUTION OF THE MATHEMATICAL MODEL

*
*
* :
A :
: DISCRETE MODEL SOLUTION
3 Y NDOF
: - -

discretization density

16




FE method for Poisson’s equation in 2D space

Poisson's equation is a partial differential equation with broad utility in electrostatics,

mechanical engineering and theoretical physics: e
e Stationary heat flow, > i
« Stationary irrotational flow of an incompressible and inviscid fluid, i
* Simple magnetic and electric fields, :

» Stress distribution in the cross-section of a twisted rod

- . A i ;] - . :
' O°u . x| L em ]
+—+f(x.x,)=0

- 7
r).rl' ox;

Let's consider the boundary conditions:

u(X) =u, . xel, -pirichletonTu

g(x)= =q¢, ., XE€ I—'Q -Neumann onTq

>

X1
Where Uo and (o are given functions defined on the corresponding parts of the boundary.
In special cases (simple geometry and boundary conditions) the task has its analytical solution.




Finite difference method (FDM)

FDM approximates the solution of a differential equation by replacing differential operators
with difference quotients:

then a reasonable approximation for )
f(a' + h} — f(a'} that derivative would be to take > ff[ﬂ) ~ ffﬂ- + h) — f(a.) (difference

f'(a) = lim ) 3 quotient)

h—s0) h

Discretization consists in replacing the searched function with a set of its values in the nodes of the grid
(regular or irregular).

The derivative values at a point are replaced by the increments (differences) of the function at neighboring nodes.

Differential equations are replaced by algebraic equations, the so-called difference equations.

We obtain a system of algebraic equations with unknowns being the values of the function at the nodes.

y A For rectangular mesh: x; =x, +1h,
w, e =u(x;, ;)
h L h Ve =y, +kg.
Different differential schemes can be adopted:
Uj k1 .
w | 1) ﬁ - ﬂ _ Mg — Wi Forward Differential quotient
U1k u,, | Wik al i I v ]
Y, Q : ; ; v My g
Uj k-1 g - _ _
’ i F b) E —~ ﬂ =& Rear differential quotient
, dv Ay g
E = ﬂ _ Mg Uik central difference quotient
Y g c) — = — = _
0 dv Ay 2g
—
Xp xi X

18




Finite difference method (FDM)

h h
. Differences corresponding to higher derivatives:
ik
) ’ ! -~ 9
Uitk | u Uirlk 3 du A’u Mg ==l Tl g -
A ik N — = ' — =, d*u ,j._ Uiy =y 00 — A
, Cdx Ax? h —
Uikl | 9y - A n*
j d".!{ A'u ”F’-r’-‘+1 —2u;, + Ui kg .
| 5.1'2 Ay g’

Using the dlfference dlagram we can express the differential equation at any point (Xi, Vi)
using an algebra1c equation. In the case of the Poisson equation:

azzr c) u 1 1 - =
- —+ f(x.x,)=0 —» T(”nl.J TR 1J]+—2(ui:j+1—2u?._J. +I{F._j_1)+f(.1(j.“l J.) =0.
ox] al, h g

- U = PR o R o T

For regular grid (h=g) and =0 (Laplace's equation) we get: i.j 1

N grid points in the domain £2, N equations, N unknowns (each equation corresponds to one grid node)

"7 " [A]{u}={p)
TN
2" a L{{ 7 In case of irregular boundary shape:
/' 4

18]
=

3 hug +0u, .

-— a) we assume 1, =——————= instead of u =u,

/ i j"l - h+o0

f i
by — O,

/ / / b) weassume ,, TN ) tead of u =,

7 / T s

Boundary condition interpolation boundary condition extrapolation

19




Examples of irregular grids in FDM

=Y

Square grid

Polar grid

-
B

L¥d LY LY LY

VAVAVAVAVA
AN / \ 7/
SNN NN
AVAVAVAVA

L]

,f'": ff'\ J/\ ,.J'E i"\

Triangular grid

X

:,-'ﬂ

7

5 7 5 7 i 7

=Y

Hexagonal grid

Rectangular grid

20




Boundary Element Method (BEM)

For the source point, one can present a boundary integral equation, which is an equivalent formulation
to the Poisson problem:

e(Eu(E) =J'u(x}q“ (E.7)dT(x) —j@r{f F)dl(F) + J'f{x}u“ (&.T)dR(T)
T r on 0

Functions u* i g* depend on the position of two points: & - source point, X - observation point

t’(é.?] - the coefficient that takes the value of 2 on a smooth contour or 1 inside the area Q2

' | o

Kernel functions (known in the theory of integral equations):

ff,‘:{‘f-l_'}:th[lw- }‘ZJ(J'1—§1]2+'I:.T2—§2]J : Q

2r \r)

Function g* is defined by the directional derivative u*:

ez ou'(E.T)
£ LX) =
11 on I,
By differentiating, we get:

. ou du” o=+

I;!' = '.i"Il+ 'ﬂ:. I;!' 3 "
dx, dx, 27r o x, =

Where: r; = x; — §;,i = 1,2, 7 = ny,n,isaunit external vector, normal to the boundary I'

The boundary integral equation states the relation between (i)

and its derivative in normal direction q(x) = agg) on the boundary I

21




Boundary Element Method (BEM) - the numerical approach

1. Discretization of the boundary (LE boundary elements)

2. On each boundary element we approximate the functions u(x) and q (i)

(e.g.: u(P;)iq(P;) constant on boundary elements) x A

3. We transform the integral equation for each nodeE into
an algebraic linear equation:

IE IE .
%u[’_}jj = ZJ u'(B,%)q(P)drl, Z J q (B.¥)u(P)dT, +J f(X)u"(P.X)dR
- T,

Ji=l r, Ji=1 0

after numerical integration for each grid point:

1 LE IE
EH(E)=Z[f§-q[;ﬂ}—ZQ;-H{}:}}+ fi. i=L2.LE.f, =J'f(f)u“{3:;.f}dfz(f)
J=1 J=l 0
LE linear equations with unknowns: u(P;) (if point P; € [y) orq(P) (if point P; € T',)
1 - *
E{u}z[b ]{g}—[Q ]{u}+{f}.

Finally: [4]{v}={b}

The solution {y} represents unknown boundary values of u and g. The matrix A — full, unsymmetric

4. Solution provides complete information about the function u(x) and its derivative g(x) on the
boundary

22




Finite Element Method (FEM)

Equivalent problem of minimizing of the fictional (for the Poisson problem):

, 1, 2
du ] [ ou ]

— | + —2f(x.xu [dQ— | gudl,
|7 a.'i-l ka.-'l-:/. f{ : _} l:[qc'

L A

I(nj=1j

7
=0
Where the function u satisfies the Dirichlet condition:

u(x) =u,, xel,
1. Discretization of the solution domain QQ
into elements Qi , i= 1,LE connected in the nodes

IF
Q:UQ.; i Q,.F‘QJ.:{} i J,
2. Approximation of function u(x) within the finite element in the
form of polynomials dependent on the unknown nodal values u;
LWE

1(x),x,) = Z N; (3, x0 )1,
i=1

LWE — number of nodes of the element
u; , i=1,....,LWE — nodal values of the approximated function
N; (x4, x5) —shape functions

3. Discrete form of the functional

B

N R \

du

2 w
] —Ef(:rl.xj)u}/ﬂf—z‘l qoudl’;
a:"-Jx i=lT,

[

X2

|

]

nodes

elements

fr—

WXy, %:)

X4

Approximation
of the function u(x, y)
over the element Q,

23




Finite Element Method (FEM)

Inside each element we have:

du LiE a"'-'
3_1(1 = 31
du  LEoN

Zdh o

In this way the functional | is replaced by the function of several unknows u; , i=1,2,....,LW,

where LW enotes the number of nodes of the finite element mesh. In matrix form, this function
has the form:

ox;

By ko ks oo Ry | I by
oy kyn ky Ity by LW
L A
I(u) :=§|_z:-_,.!.':,u3,..__nﬁr_l by ks Al g »—LIE11I{]_I{3I.._,HI“-J* b, ¢ — “\
FEx p .‘.I‘\_
| kym hrr;rr_ Upg by Zero
elements
" NI '
on-zero
_L?fJ[K]{E{} LHJ{E} [ elements ©
LWL L I<LEF  LH ]
The necessary condition for the minimum of this function is that all partial ' N—
ivati 5 ol
derivatives are zero Z _o. i=1.. . LW,
du,
matrix: sparse, symmetrical,
[K ]{“} — {b} , (+ Dirichlet b.c.) positive defined, banded

Set of the simultaneous equations with unknown nodal values of the investigated function

24




Example 4: Stationary heat flow in a pipe

The thick-walled steel pipe has an internal temp. T,,=100°C and the outside temp. T,=20°C.

Pipe inner radius is a=30mm, external radius b=40mm. Calculate the temperature distribution.

Data: A=50W/mK.
Laplace's equation:

Analytical solution:

VZT — O — T(r):TW+TZ_TWIn(£j

Tz

In(bj a
(%) =1, . ¥eTl, a
‘ q0=28 _ g ser

on ‘

Temperature distribution:

ANSYS
W

.....

FEM model:

ANSYS
[

25




General calculation procedure

Finite difference method (FDM)

Boundary element method (BEM)

partial differential equations

integral boundary equations

.

-

Finite element method (FEM)

functional minimization problem

:

Construction of a node grid
and adoption of selected
differential schemes

Division of the boundary into segments

(boundary elements) and assumption of
appropriate approximation functions on
the elements (shape functions)

Division of the region into small
subregions (finite elements) and adoption
of appropriate approximating functions on
the elements (shape functions)

’

vvvvvvvv

........
:::::::

Replacing differential equations with
difference equations for successive
nodes of the region. Forming a system of
linear equations.

Construction of a discrete representation
of the integral equation for successive
boundary nodes. Formation of a system
of linear equations

Construction of the stiffness matrix of
successive elements. Formation of a
system of linear equations.

I

v

Modification of the system of equations
- introduction of boundary conditions

.

.

.

Modification of the system of equations
- introduction of boundary conditions

Modification of the system of equations
- introduction of boundary conditions

s

Solution of a system of linear equations
(sparse, banded, usually symmetric matrix)

:

Solution of a system of linear equations
(full asymmetric matrix)

Complementary calculations, e.g. derivatives
of the searched functions at the nodes

:

v

Solution of a system of linear equations
(sparse, banded, usually symmetric matrix)

-

Complementary calculations, e.g. derivatives of
the searched in selected points of the domain

Complementary calculations, e.g. derivatives of
the searched functions inside finite elements

26




FEM as an approximate method

Finite element method (FEM) is an approximate method that can be used
as a numerical procedure to solve physical problems, including:

- solid mechanics,

- heat transfer,

- fluid flow,

- electromagnetism,

- coupled field problems

FEM was developed in the 1950s to solve The purpose of the lecture: providing
problems for the civil and aerospace the basic knowledge and skills needed
industries. The method has become the most to understand and apply FEM to solve
powerful analytical tool, mainly due to the boundary value problems for partial
development of computers. differential equations.

27




Basics of matrix calculus

A banded matrix is a square matrix which nonzero elements lie on the main diagonal

(diagonal) and on k lines parallel to the diagonal on each side (a;; = 0if |[i — j| = k).

The number (2k+ 1) is called the
bandwidth and the number (k + 1) is
[A ] - . called the matrix [A] half-band width.

A diagonal matrix with nonzero individual elements

is called an identity matrix of dimension n

where 0, denotes the Kronecker symbol:

5, =1ifi =k, 8, =0,ifi k.

created by interchanging the rows and columns.

We have |¢]” = {q} and {q}" = lq].
A square matrix is called a symmetric matrix if [4]" =[4] (a,, = a,).

28




Basic operations on matrices

The sum of matrices: [A] = [a,.]and [B] = [b,,]is matrix [C] = [a,, + b,.].
mxn mxn mxn
The matrix addition operation requires that the dimensions of the component

matrices be consistent.

The product of matrix [4] = [a,, ] by a real number 4 gives matrix [B] = [Aax].

mxn mxn

The product of a matrix [4] = [a,,] by a matrix [B]:[bik]gives matrix [C] = [c;]
mxn nxp mxp

such that:

— N :
Ci = Zj=].a:j bjk l

I
[
o

am. k

Il
[—
o

™

(D.3)

Matrix multiplication is only possible if the number of columns of the first matrix is
equal to the number of rows of the second matrix. Matrix multiplication is not

commutative ([4][B] # [B][A]).

29




Matrix multiplication using Falk's scheme

1
b
— — 11
Cir = Z a:jbjk =ayby +a,by +...+a,b,
J=1
bhul
a,, a \\“m\ ¢
as

a, a, caal g

_‘l”,l - R - ‘I """ | -(.”ll

Selected properties of matrix operations:
L. [41-([BI[CT)=([4]-[B])-[C]

2. o A]-[B]=(al4])-[B]=[4]-(B])
3. ([4)[B]) =[BI[4)

b

b,

30




Determinant of a matrix

The determinant of a square matrix [4] = [a,.] is a real number det[A] which is
nxn

defined by the relations
1) forn =1 det[A] = ay,

1x1
2) forn=2det[A] =ay Ay — Q4 " Qsy (D.7)
3) forn = 3 the determinant can be calculated by selecting any row r

and using the so-called Laplace expansion:

det[A] = Q@ T Apa@y bl e Z)‘ QApj Cpj (08)

a,; is called the algebraic complement of element a,; of matrix [A] and is

calculated according to the formula
a, = (1" det[ Mj] (D.9)

where [M ] is a submatrix of matrix [A] obtained by deleting the rth row

and jth column of matrix [A].
In particular, for n = 3 we get by choosing » = 1:
det[d]=ay; (a5, - a33—ay; - a3) —ay, - (a5, @33 — a3 - a3)) +ay5 - (ay - a3, — a5, - ay,)

A matrix whose determinant is equal to zero is called a singular matrix.

31




The rank of the matrix A is the largest dimension of the square submatrix created by
deleting part of the rows and columns for which the determinant is different from

zero. The rank of a nonsingular matrix of dimension n is therefore n. The rank of a
singular matrix is smaller than its dimension.

Selected properties of the determinant:

1. If any two rows (columns) are linearly dependent (can be represented as a

linear combination of the others), then the value of the determinant is equal

to zero.

2. det[ A] = det[A]".
3. The determinant of a diagonal matrix is equal to the product of its diagonal

elements.
4. det([A] - [B]) = det[ A] - det[ B].

32




The inverse matrix of a nonsingular matrix [4] is called a matrix [A]~* such that:

nxn

[A]- [A]7" = [A]7"[A4] = [1] = [Bl-

There is exactly one inverse matrix of a nonsingular matrix

= 1
(A1 = 22 [T,

where a;, are the algebraic complements of the elements a,, of the matrix [A].

A system of m linear equations with n unknowns
n

Za:}. x;=b; (i=1,2,,m)

=1
can be written in matrix form

[A] {x} = {b}

mxnnx1 mx1

A system is called inconsistent when it has no solution, determinate when it has
exactly one solution, or indeterminate when it has infinitely many solutions.
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Examples

EXAmMPLE 1
1 2
Let [A] = [3 4]. Let's calculate: [A] - [A]T.
> b
According to Falk's scheme: [ 1 3 ?]
2 - 6
1 2 > ¥ 17
3 11 25 39
5 6 17 39 61
- 8 13 ¥
Finally: [C] = [4]-[4]" =|11 25 39|
17 39 61
EXAMPLE 2

Prove that the stiffness matrix of the beam element [k] is singular

. 2EJI31 2F =31 IF
[";]: ] —-21 - —-11
6 —31 6 -3I

31 I* -31 2IF

In the matrix [k] we can see a linear relationship between the rows (and columns),
hence the conclusion that the determinant must be zero. For example, the first
row is the result of multiplying the third row by —1. The first row can also be
obtained by summing the second and fourth rows and dividing the result by /.

34




Examples

EXAMPLE 3
2 1 3 :
let[A]=|1 1 0} Let's calculate: [4]™".
0 0 1

First, we determine the value of the determinant:
det[A]=2-(—1)"-(1-1=0-0)+1-(—=1)*-(1-1=0-0)+1-(—-1)*-(1-0-1-0)=2—-1=1
det[A] = 1.

This means that there is an inverse matrix.
The matrix of algebraic complements is in this case equal to:

1 =10
[al‘;‘-] =|-1 2 0l
-1 1 1
. ; - . 1 -1 -1
Hence [4] = Fot @)’ = [A]7*=|-1 2 1}
0 0 1
Verification:
’ 1 00
[4]-A1* =0 1 o|=m
D A ¥
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